Note on Elementary Analysis II (2019-20)

4. Power series

Throughout this section, let

$$
f(x) = \sum_{i=0}^{\infty} a_i x^i \qquad \qquad \ldots \ldots \ldots \ldots \ldots (*)
$$

denote a formal power series, where $a_i \in \mathbb{R}$.

Lemma 4.1. Suppose that there is $c \in \mathbb{R}$ with $c \neq 0$ such that $f(c)$ is convergent. Then

- (i) : $f(x)$ is absolutely convergent for all x with $|x| < |c|$.
- (ii) : f converges uniformly on $[-\eta, \eta]$ for any $0 < \eta < |c|$.

Proof. For Part (i), note that since $f(c)$ is convergent, then $\lim a_n c^n = 0$. So there is a positive integer N such that $|a_n c^n| \leq 1$ for all $n \geq N$. Now if we fix $|x| < |c|$, then $|x/c| < 1$. Therefore, we have

$$
\sum_{n=1}^{\infty} |a_n||x^n| \le \sum_{n=1}^{N-1} |a_n||x^n| + \sum_{n\ge N} |a_n c^n||x/c|^n \le \sum_{n=1}^{N-1} |a_n||x^n| + \sum_{n\ge N} |x/c|^n < \infty.
$$

So Part (i) follows.

Now for Part (ii), if we fix $0 < \eta < |c|$, then $|a_n x^n| \leq |a_n \eta|^n$ for all n and for all $x \in [-\eta, \eta]$. On the other hand, we have $\sum_{n} |a_n \eta^n| < \infty$ by Part (i). So f converges uniformly on $[-\eta, \eta]$ by the M-test. The proof is finished. \square

Remark 4.2. In Lemma 4.9(ii), notice that if $f(c)$ is convergent, it does not imply f converges uniformly on $[-c, c]$ in general.

For example, $f(x) := 1 + \sum_{n=0}^{\infty}$ $n=1$ x^n $\frac{n}{n}$. Then $f(-1)$ is convergent but $f(1)$ is divergent.

Definition 4.3. Call the set dom $f := \{x \in \mathbb{R} : f(c)$ is convergent $\}$ the domain of convergence of f for convenience. Let $0 \le r := \sup\{|c| : c \in dom f\} \le \infty$. Then r is called the radius of convergence of f .

Remark 4.4. Notice that by Lemma 4.9, then the domain of convergence of f must be the interval with the end points $\pm r$ if $0 < r < \infty$. When $r = 0$, then dom $f = \{0\}$. Finally, if $r = \infty$, then dom $f = \mathbb{R}$.

Example 4.5. If $f(x) = \sum_{n=0}^{\infty} n!x^n$, then $r = (0)$. In fact, notice that if we fix a non-zero number x and consider $\lim_{n} |(n+1)!x^{n+1}|/|n!x^n| = \infty$, then by the ratio test $f(x)$ must be divergent for any $x \neq 0$. So $r = 0$ and dom $f = (0)$.

Example 4.6. Let $f(x) = 1 + \sum_{n=1}^{\infty} x^n/n^n$. Notice that we have $\lim_{n} |x^n/n^n|^{1/n} = 0$ for all x. So the root test implies that $f(x)$ is convergent for all x and then $r = \infty$ and dom $f = \mathbb{R}$.

Example 4.7. Let $f(x) = 1 + \sum_{n=1}^{\infty} x^n/n$. Then $\lim_{n} |x^{n+1}/(n+1)| \cdot |n/x^n| = |x|$ for all $x \neq 0$. So by the ration test, we see that if $|x| < 1$, then $f(x)$ is convergent and if $|x| > 1$, then $f(x)$ is divergent. So r = 1. Also, it is known that $f(1)$ is divergent but $f(-1)$ is divergent. Therefore, we have dom $f = [-1, 1)$.

10 CHI-WAI LEUNG

Example 4.8. Let $f(x) = \sum x^n/n^2$. Then by using the same argument of Example 4.7, we have $r = 1$. On the other hand, it is known that $f(\pm 1)$ both are convergent. So dom $f = [-1, 1]$.

Lemma 4.9. With the notation as above, if $r > 0$, then f converges uniformly on $(-\eta, \eta)$ for any $0 < \eta < r$.

Proof. It follows from Lemma 4.1 at once.

Remark 4.10. Note that the Example 4.7 shows us that f may not converge uniformly on $(-r, r)$. In fact let f be defined as in Example 4.7. Then f does not converges on $(-1,1)$. In fact, if we let $s_n(x) = \sum_{k=0}^{\infty} a_k x^k$, then for any positive integer n and $0 < x < 1$, we have

$$
|s_{2n}(x) - s_n(x)| = \frac{x^{n+1}}{n+1} + \dots + \frac{x^n}{2n}.
$$

From this we see that if n is fixed, then $|s_{2n}(x) - s_n(x)| \to 1/2$ as $x \to 1-$. So for each n, we can find $0 < x < 1$ such that $|s_{2n}(x) - s_n(x)| > \frac{1}{2} - \frac{1}{4} = \frac{1}{4}$ $\frac{1}{4}$. Thus f does not converges uniformly on $(-1, 1)$ by the Cauchy Theorem.

Proposition 4.11. With the notation as above, let $\ell = \overline{\lim} |a_n|^{1/n}$ or $\lim \frac{|a_{n+1}|}{|a_n|^{n}}$ $\frac{|a_{n+1}|}{|a_n|}$ provided it exists. Then

$$
r = \begin{cases} \frac{1}{\ell} & \text{if } 0 < \ell < \infty; \\ 0 & \text{if } \ell = \infty; \\ \infty & \text{if } \ell = 0. \end{cases}
$$

Proposition 4.12. With the notation as above if $0 < r \leq \infty$, then $f \in C^{\infty}(-r, r)$. Moreover, the k-derivatives $f^{(k)}(x) = \sum_{n \geq k} a_k n(n-1)(n-2) \cdot \cdots \cdot (n-k+1)x^{n-k}$ for all $x \in (-r, r)$.

Proof. Fix $c \in (-r, r)$. By Lemma 4.9, one can choose $0 < \eta < r$ such that $c \in (-\eta, \eta)$ and f converges uniformly on $(-\eta, \eta)$.

It needs to show that the k-derivatives $f^{(k)}(c)$ exists for all $k \geq 0$. Consider the case $k = 1$ first. If we consider the series $\sum_{n=0}^{\infty} (a_n x^n)^{\prime} = \sum_{n=1}^{\infty} n a_n x^{n-1}$, then it also has the same radius r because $\lim_{n} |na_n|^{1/n} = \lim_{n} |a_n|^{1/n}$. This implies that the series $\sum_{n=1}^{\infty} na_n x^{n-1}$ converges uniformly on $(-\eta, \eta)$. Therefore, the restriction $f|(-\eta, \eta)$ is differentiable. In particular, $f'(c)$ exists and $f'(c) = \sum_{n=1}^{\infty} n a_n c^{n-1}.$

So the result can be shown inductively on k.

Proposition 4.13. With the notation as above, suppose that $r > 0$. Then we have

$$
\int_0^x f(t)dt = \sum_{n=0}^\infty \int_0^x a_n t^n dt = \sum_{n=0}^\infty \frac{1}{n+1} a_n x^{n+1}
$$

for all $x \in (-r, r)$.

Proof. Fix $0 < x < r$. Then by Lemma 4.9 f converges uniformly on $[0, x]$. Since each term $a_n t^n$ is continuous, the result follows.

Theorem 4.14. (Abel) : With the notation as above, suppose that $0 < r$ and $f(r)$ (or $f(-r)$) exists. Then f is continuous at $x = r$ (resp. $x = -r$), that is $\lim_{x \to r-} f(x) = f(r)$.

Proof. Note that by considering $f(-x)$, it suffices to show that the case $x = r$ holds. Assume $r = 1$.

Notice that if f converges uniformly on [0, 1], then f is continuous at $x = 1$ as desired. Let $\varepsilon > 0$. Since $f(1)$ is convergent, then there is a positive integer such that

$$
|a_{n+1} + \cdots + a_{n+p}| < \varepsilon
$$

for $n \geq N$ and for all $p = 1, 2...$ Note that for $n \geq N$; $p = 1, 2...$ and $x \in [0, 1]$, we have

$$
s_{n+p}(x) - s_n(x) = a_{n+1}x^{n+1} + a_{n+2}x^{n+1} + a_{n+3}x^{n+1} + \cdots + a_{n+p}x^{n+1}
$$

+
$$
a_{n+2}(x^{n+2} - x^{n+1}) + a_{n+3}(x^{n+2} - x^{n+1}) + \cdots + a_{n+p}(x^{n+2} - x^{n+1})
$$

+
$$
a_{n+3}(x^{n+3} - x^{n+2}) + \cdots + a_{n+p}(x^{n+3} - x^{n+2})
$$

:

$$
+ a_{n+p}(x^{n+p} - x^{n+p-1}).
$$

Since $x \in [0,1]$, $|x^{n+k+1} - x^{n+k}| = x^{n+k} - x^{n+k+1}$. So the Eq.4.1 implies that $|s_{n+p}(x)-s_n(x)| \leq \varepsilon (x_{n+1}+(x^{n+1}-x^{n+2})+(x^{n+2}-x^{n+3})+\cdots+(x^{n+p-1}-x^{n+p})) = \varepsilon (2x^{n+1}-x^{n+p}) \leq 2\varepsilon.$ So f converges uniformly on $[0, 1]$ as desired.

Finally for the general case, we consider $g(x) := f(rx) = \sum_n a_n r^n x^n$. Note that $\lim_n |a_n r^n|^{1/n} = 1$ and $g(1) = f(r)$. Then by the case above,, we have shown that

$$
f(r) = g(1) = \lim_{x \to 1-} g(x) = \lim_{x \to r-} f(x).
$$

The proof is finished. \Box

Remark 4.15. In Remark 4.10, we have seen that f may not converges uniformly on $(-r, r)$. However, in the proof of Abel's Theorem above, we have shown that if $f(\pm r)$ both exist, then f converges uniformly on $[-r, r]$ in this case.

5. Real analytic functions

Proposition 5.1. Let $f \in C^{\infty}(a, b)$ and $c \in (a, b)$. Then for any $x \in (a, b) \setminus \{c\}$ and for any $n \in \mathbb{N}$, there is $\xi = \xi(x, n)$ between c and x such that

$$
f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!} (x - c)^{k} + \int_{c}^{x} \frac{f^{(n+1)}(t)}{n!} (x - t)^{n} dt
$$

 $Call \sum_{\alpha}^{\infty}$ $_{k=0}$ $f^{(k)}(c)$ $\frac{f(c)}{k!}(x-c)^k$ (may not be convergent) the Taylor series of f at c.

Proof. It is easy to prove by induction on n and the integration by part.

Definition 5.2. A real-valued function f defined on (a, b) is said to be real analytic if for each $c \in (a, b)$, one can find $\delta > 0$ and a power series $\sum_{k=0}^{\infty} a_k(x-c)^k$ such that

$$
f(x) = \sum_{k=0}^{\infty} a_k (x - c)^k \qquad \qquad \dots \dots \dots (*)
$$

for all $x \in (c - \delta, c + \delta) \subseteq (a, b)$.

Remark 5.3.

11

12 CHI-WAI LEUNG

(i) : Concerning about the definition of a real analytic function f, the expression $(*)$ above is uniquely determined by f, that is, each coefficient a_k 's is uniquely determined by f. In fact, by Proposition 4.12, we have seen that $f \in C^{\infty}(a, b)$ and

$$
a_k = \frac{f^{(k)}(c)}{k!} \qquad \qquad \cdots \cdots \cdots (*)
$$

for all $k = 0, 1, 2, ...$

(ii) : Although every real analytic function is C^{∞} , the following example shows that the converse does not hold.

Define a function $f : \mathbb{R} \to \mathbb{R}$ by

$$
f(x) = \begin{cases} e^{-1/x^2} & \text{if } x \neq 0; \\ 0 & \text{if } x = 0. \end{cases}
$$

One can directly check that $f \in C^{\infty}(\mathbb{R})$ and $f^{(k)}(0) = 0$ for all $k = 0, 1, 2,...$ So if f is real analytic, then there is $\delta > 0$ such that $a_k = 0$ for all k by the Eq.(**) above and hence $f(x) \equiv 0$ for all $x \in (-\delta, \delta)$. It is absurd.

(iii) Interesting Fact : Let D be an open disc in $\mathbb C$. A complex analytic function f on D is similarly defined as in the real case. However, we always have: f is complex analytic if and only if it is C^{∞} .

Proposition 5.4. Suppose that $f(x) := \sum_{k=0}^{\infty} a_k(x-c)^k$ is convergent on some open interval I centered at c, that is $I = (c - r, c + r)$ for some $r > 0$. Then f is analytic on I.

Proof. We first note that $f \in C^{\infty}(I)$. By considering the translation $x-c$, we may assume that $c = 0$. Now fix $z \in I$. Now choose $\delta > 0$ such that $(z - \delta, z + \delta) \subseteq I$. We are going to show that

$$
f(x) = \sum_{j=0}^{\infty} \frac{f^{(j)}(z)}{j!} (x - z)^j.
$$

for all $x \in (z - \delta, z + \delta)$.

Notice that $f(x)$ is absolutely convergent on I. This implies that

$$
f(x) = \sum_{k=0}^{\infty} a_k (x - z + z)^k
$$

=
$$
\sum_{k=0}^{\infty} a_k \sum_{j=0}^{k} \frac{k(k-1) \cdots (k-j+1)}{j!} (x - z)^j z^{k-j}
$$

=
$$
\sum_{j=0}^{\infty} \left(\sum_{k \ge j} k(k-1) \cdots (k-j+1) a_k z^{k-j} \right) \frac{(x-z)^j}{j!}
$$

=
$$
\sum_{j=0}^{\infty} \frac{f^{(j)}(z)}{j!} (x - z)^j
$$

for all $x \in (z - \delta, z + \delta)$. The proof is finished.

Example 5.5. Let $\alpha \in \mathbb{R}$. Recall that $(1+x)^{\alpha}$ is defined by $e^{\alpha \ln(1+x)}$ for $x > -1$. Now for each $k \in \mathbb{N}$, put

$$
\binom{\alpha}{k} = \begin{cases} \frac{\alpha(\alpha-1)\cdots(\alpha-k+1)}{k!} & \text{if } k \neq 0; \\ 1 & \text{if } x = 0. \end{cases}
$$

Then

$$
f(x) := (1+x)^{\alpha} = \sum_{k=0}^{\infty} {\alpha \choose k} x^k
$$

whenever $|x| < 1$. Consequently, $f(x)$ is analytic on $(-1, 1)$.

Proof. Notice that $f^{(k)}(x) = \alpha(\alpha - 1) \cdot \cdot \cdot \cdot (\alpha - k + 1)(1 + x)^{\alpha - k}$ for $|x| < 1$. Fix $|x| < 1$. Then by Proposition 5.1, for each positive integer n we have

$$
f(x) = \sum_{k=0}^{n-1} \frac{f^{(k)}(0)}{k!} x^k + \int_0^x \frac{f^{(n)}(t)}{(n-1)!} (x-t)^{n-1} dt
$$

So by the mean value theorem for integrals, for each positive integer n, there is ξ_n between 0 and x such that

$$
\int_0^x \frac{f^{(n)}(t)}{(n-1)!} (x-t)^{n-1} dt = \frac{f^{(n)}(\xi_n)}{(n-1)!} (x-\xi_n)^{n-1} x
$$

Now write $\xi_n = \eta_n x$ for some $0 < \eta_n < 1$ and $R_n(x) := \frac{f^{(n)}(\xi_n)}{(n-1)!}(x - \xi_n)^{n-1}x$. Then

$$
R_n(x) = (\alpha - n + 1) \binom{\alpha}{n-1} (1 + \eta_n x)^{\alpha - n} (x - \eta_n x)^{n-1} x = (\alpha - n + 1) \binom{\alpha}{n-1} x^n (1 + \eta_n x)^{\alpha - 1} \left(\frac{1 - \eta_n}{1 + \eta_n x}\right)^{n-1}.
$$

We need to show that $R_n(x) \to 0$ as $n \to \infty$, that is the Taylor series of f centered at 0 converges to f. By the Ratio Test, it is easy to see that the series $\sum_{n=1}^{\infty}$ $k=0$ $(\alpha - k + 1)$ k y^k is convergent as $|y| < 1$.

This tells us that $\lim_{n} |(\alpha - n + 1)| \binom{\alpha}{n}$ n $\Big\}x^n\Big|=0.$

On the other hand, note that we always have $0 < 1 - \eta_n < 1 + \eta_n x$ for all n because $x > -1$. Thus, we can now conclude that $R_n(x) \to 0$ as $|x| < 1$. The proof is finished. Finally the last assertion follows from Proposition 5.4 at once. The proof is complete.

REFERENCES

(Chi-Wai Leung) Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong Email address: cwleung@math.cuhk.edu.hk