Note on Elementary Analysis IT (2019-20)

4. POWER SERIES

Throughout this section, let

o0
f([[,‘) = Zaixl ............ (*)
1=0
denote a formal power series, where a; € R.

Lemma 4.1. Suppose that there is ¢ € R with ¢ # 0 such that f(c) is convergent. Then

(i) : f(z) is absolutely convergent for all x with |z| < |c|.

(ii) : f converges uniformly on [—n,n] for any 0 < n < |c|.
Proof. For Part (i), note that since f(c) is convergent, then lim a,c™ = 0. So there is a positive integer
N such that |a,c"| <1 for all n > N. Now if we fix |z| < ]c| then |z/c| < 1. Therefore, we have

Z lanlla™] < Z anlla™] + 3 lanc®lz/el" < Z anllz™ + 3 o/l < 0.
n>N n>N
So Part (i) follows.
Now for Part (i7), if we fix 0 < n < |c| ,then |a,z"| < |a,n|™ for all n and for all € [-n,n]. On the
other hand, we have " |a,n™| < oo by Part (i). So f converges uniformly on [—n,n] by the M-test.
The proof is finished. O]

Remark 4.2. In Lemma 4.9(ii), notice that if f(c) is convergent, it does not imply f converges
uniformly on [—c, c] in geneml

For example, f(z):=1+ Z . Then f(—1) is convergent but f(1) is divergent.

Definition 4.3. Call the set dom f:={x € R: f(c) is convergent } the domain of convergence of f
for convenience. Let 0 < r :=sup{|c|: ¢ € dom f} < co. Then r is called the radius of convergence

of f.

Remark 4.4. Notice that by Lemma 4.9, then the domain of convergence of f must be the interval
with the end points +r if 0 < r < oco.

When r = 0, then dom f = {0}.

Finally, if r = oo, then dom f = R.

Example 4.5. If f(z) = Y_,2  nla™, then r = (0). In fact, notice that if we firx a non-zero number
x and consider lim,, |(n + 1)!2"TY|/|nlz"| = oo, then by the ratio test f(x) must be divergent for any
x#0. Sor =0 and dom f = (0).

Example 4.6. Let f(z) = 1+ 320 2"/n". Notice that we have lim,, [z"/n™|"/" = 0 for all . So
the root test implies that f(x) is convergent for all x and then r = oo and dom f =R.

Example 4.7. Let f(z) = 1+ 52, 2"/n. Then lim, [2"/(n + 1)| - [n/2"| = |z| for all z # 0.
So by the ration test, we see that if |x| < 1, then f(x) is convergent and if |x| > 1, then f(x) is
divergent. So r = 1. Also, it is known that f(1) is divergent but f(—1) is divergent. Therefore, we
have dom f =[-1,1).
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Example 4.8. Let f(z) = Y. 2"/n?. Then by using the same argument of Example 4.7, we have
r = 1. On the other hand, it is known that f(£1) both are convergent. So dom f = [—1,1].

Lemma 4.9. With the notation as above, if r > 0, then f converges uniformly on (—n,n) for any
0O<n<r.

Proof. Tt follows from Lemma 4.1 at once. 0

Remark 4.10. Note that the Exzample 4.7 shows us that f may not converge uniformly on (—r,r).
In fact let f be defined as in Example 4.7. Then f does not converges on (—1,1). In fact, if we let
sn(z) =000 apz®, then for any positive integer n and 0 < x < 1, we have

xn
R + o
From this we see that if n is fized, then |son(x) — sp(x)] — 1/2 as © — 1—. So for each n, we can find
0 <z <1 such that |san(x) — sp(z)| > % — % = i. Thus f does not converges uniformly on (—1,1) by
the Cauchy Theorem.

520 () — sp ()]

Proposition 4.11. With the notation as above, let { = lim |an\1/" or lim |7n+|1| provided it exists.
n
Then
! if 0< < o0;
r=140 if €= oc;
o0 if £=0.

Proposition 4.12. With the notation as above if 0 < r < oo, then f € C*(—r,r). Moreover, the
k-derivatives f*)(x) = donskakn(n—1)(n —2)- - (n —k+ 12" for all x € (—r,7).

Proof. Fix ¢ € (—r,r). By Lemma 4.9, one can choose 0 < 1 < r such that ¢ € (—n,n) and f converges
uniformly on (—n,n).

It needs to show that the k-derivatives f(*)(c) exists for all k > 0. Consider the case k = 1 first.

If we consider the series Y o0 ((anz™) = >.°°  na,z™ ', then it also has the same radius r be-
cause limy, [na,|"/" = lim, |a,|'/". This implies that the series 3 .°° | na,z"~' converges uniformly
on (—n,n). Therefore, the restriction f|(—n,n) is differentiable. In particular, f’(c) exists and
£(0) = 300y nage™ .

So the result can be shown inductively on k. ([l

n—1

Proposition 4.13. With the notation as above, suppose that r > 0. Then we have

x 0 x 0 1
t)dt = Dt = Lt
/Of() ;)/oa >

0

for allx € (—r,r).

Proof. Fix 0 < x < r. Then by Lemma 4.9 f converges uniformly on [0,z]|. Since each term a,t" is
continuous, the result follows. O

Theorem 4.14. (Abel) : With the notation as above, suppose that 0 < r and f(r) (or f(—r)) exists.
Then f is continuous at x =r (resp. x = —r), that is lim f(z) = f(r).
T—r—
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Proof. Note that by considering f(—=x), it suffices to show that the case x = r holds.
Assume r = 1.

Notice that if f converges uniformly on [0, 1], then f is continuous at z = 1 as desired.
Let € > 0. Since f(1) is convergent, then there is a positive integer such that

for n > N and for all p =1,2.... Note that for n > N; p=1,2... and z € [0, 1], we have

3n+p(x) —sp(z) = Cln+135n+1 + an+2$n+1 + an+31:"+1 S + anﬂ)xn-&-l
+ ana2 ($n+2 — .Z‘n+1) + an43 (.Z'n+2 — x"+1) e + an+p($n+2 xn-i—l)
(4.1) + an+3 ($n+3 — xn+2) e + an+p($n+3 xn-i—?)
Ty (a™P — g,

Since z € [0,1], [a"Th+L — gntk| = pntk _ gnth+l Qo the Eq.4.1 implies that
|$ntp(@) =50 (2)| < e(Tpp1+(2" T2 T2) 4 ("2 ") o (TP ™)) = (227 2" P) < 2e

So f converges uniformly on [0, 1] as desired.
Finally for the general case, we consider g(z) := f(rz) = 3., a,r"z™. Note that limy, [a,r"|'/" = 1
and g(1) = f(r). Then by the case above,, we have shown that

f(r)=9(1) = lim g(z) = lim f(z).
The proof is finished. O

Remark 4.15. In Remark 4.10, we have seen that f may not converges uniformly on (—r,r). How-
ever, in the proof of Abel’s Theorem above, we have shown that if f(£r) both exist, then f converges
uniformly on [—r,r]| in this case.

5. REAL ANALYTIC FUNCTIONS

Proposition 5.1. Let f € C*°(a,b) and c € (a,b). Then for any x € (a,b) \ {c¢} and for any n € N,
there is € = £(x,n) between ¢ and x such that

n ) (¢ z f(n+1)
fla)y=>" / !( )(x —c)¥ +/ fn,(t)(x —t)"dt
k=0 ¢ ’

k

> £(k)
Call Z / k'(c) (z — &)k (may not be convergent) the Taylor series of f at c.
k=0 ’

Proof. 1t is easy to prove by induction on n and the integration by part. ([l

Definition 5.2. A real-valued function f defined on (a,b) is said to be real analytic if for each
c € (a,b), one can find § > 0 and a power series > oo ar(z — ¢)* such that

f(z) = Z ag(z—c)F (%)
k=0

for all x € (¢ —6,¢+0) C (a,b).

Remark 5.3.
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(i) : Concerning about the definition of a real analytic function f, the expression (%) above is
uniquely determined by f, that is, each coefficient ay’s is uniquely determined by f. In fact,
by Proposition 4.12, we have seen that f € C*®(a,b) and

*) (¢
T IR "

forallk=0,1,2,....

(ii) : Although every real analytic function is C*°, the following example shows that the converse
does not hold.
Define a function f: R — R by

B e~/ if ©#0;
ﬂ@_{o if ©=0.

One can directly check that f € C®(R) and f*)(0) = 0 for all k = 0,1,2.... So if f is real
analytic, then there is 6 > 0 such that ap = 0 for all k by the Eq.(xx) above and hence f(x) =0
for all x € (=6,0). It is absurd.

(iii) Interesting Fact : Let D be an open disc in C. A complex analytic function f on D is

similarly defined as in the real case. However, we always have: f is complex analytic if and
only if it is C°.

Proposition 5.4. Suppose that f(x) := > 27, ak (z—c)F is convergent on some open interval I centered
at ¢, that is I = (¢ —r,c+ 1) for some r > 0. Then f is analytic on I.

Proof. We first note that f € C°°(I). By considering the translation x — ¢, we may assume that ¢ = 0.
Now fix z € I. Now choose § > 0 such that (z — 0,z + ) C I. We are going to show that

© f(j)(z)

7 (z—2).

fz) =

J=0

for all z € (z — 0,2 + 9).
Notice that f(z) is absolutely convergent on I. This implies that

f(zx) :Zak(x—z+z)k
k=0
00 k
k(k—1)------ k—j+1

:Zakz ( ) i ( )(a: 2)I k0
k=0  j=0
e — )

=S k=) e (ko ety 22
im0 k= I
©£()

:Zf .'(Z)(w—z)]
=0 7

for all x € (z — d, 2 + ). The proof is finished. O

Example 5.5. Let a € R. Recall that (14 x)® is defined by e(+2) for x> —1.

Now for each k € N, put
<a> B a(afl)---l-c-!-(akarl) Zf k 7& 0;
k 1 if x=0.
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Then

whenever |z| < 1.
Consequently, f(x) is analytic on (—1,1).

Proof. Notice that f*)(z) = afa —1)------ (@ —k+1)(1+2)*F for |2] < 1.
Fix |z| < 1. Then by Proposition 5.1, for each positive integer n we have

n—1
MO g 7 net
fz) = ,}0 Y + = 1)!(35 — )" dt
So by the mean value theorem for integrals, for each positive integer n, there is &, between 0 and x

such that ( )() ( )( )
‘ fn t n—1g, __ fn fn . n—1
/0 (n—l)!(w_t) dt = 7@_1)!(:0 &)
Now write &, = f — w _ ¢ \n—1
n = Npa for some 0 < n, <1 and R,(x) := (=1 (z —&,)" "x. Then
11— o,
Ro(w) = (a—n+1) (n . 1) (L) (@ —ma2)" 2 = (a—n-+1) (nf 1)xn<1+nnx>a—1<1+:x>n 3

We need to show that R, (z) — 0 as n — oo, that is the Taylor series of f centered at 0 converges to

o0
f. By the Ratio Test, it is easy to see that the series Z(a —k+1) (2) y* is convergent as |y| < 1.
k=0

This tells us that lim [(« — n + 1) (a) 2" =0.
n n

On the other hand, note that we always have 0 < 1 -7, < 1+4mn,x for all n because x > —1. Thus, we
can now conclude that R, (x) — 0 as |z| < 1. The proof is finished. Finally the last assertion follows
from Proposition 5.4 at once. The proof is complete. O
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